Cryopreservation of the model alga Ectocarpus (Phaeophyceae).
نویسندگان
چکیده
The brown alga Ectocarpus has recently become the first fully sequenced multicellular alga and is an important biological model. Due to the large and growing number of Ectocarpus strains isolated and maintained by the research community, including increasing numbers of mutants, there is an urgent need for developing reliable, cost-effective long-term maintenance techniques. We report here that cryopreservation constitutes an attractive option in this respect, using a simple two-step protocol employing combined DMSO 10 percent (v/v) and sorbitol 9 percent (w/v) as cryoprotectants. This model organism appears to be remarkably robust and post-cryo recovery has been observed in all strains tested in this study. Cultures can be regenerated by the germination of cryopreserved zooids (spores), or the recovery of vegetative cells. In the latter case, dividing surviving cells may grow into the cell lumen of a neighbouring dead cell, eventually regenerating a phenotypically normal thalloidal structure.
منابع مشابه
Microbiota Influences Morphology and Reproduction of the Brown Alga Ectocarpus sp.
Associated microbiota play crucial roles in health and disease of higher organisms. For macroalgae, some associated bacteria exert beneficial effects on nutrition, morphogenesis and growth. However, current knowledge on macroalgae-microbiota interactions is mostly based on studies on green and red seaweeds. In this study, we report that when cultured under axenic conditions, the filamentous bro...
متن کاملCopper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories.
Inter- and intra-specific variation in metal resistance has been observed in the ecologically and economically important marine brown macroalgae (Phaeophyceae), but the mechanisms of cellular tolerance are not well elucidated. To investigate inter-population responses of brown seaweeds to copper (Cu) pollution, the extent of oxidative damage and antioxidant responses were compared in three stra...
متن کاملAuxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus.
Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this...
متن کاملMorphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching
A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindri...
متن کاملmicroRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus
There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cryo letters
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2012